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1. INTRODUCTION

We consider the estimation of the weighted integral of a stochastic

process X over a finite interval

= a 0(t)X(t)dt

from observations of the process at a finite number of sampling points. The

process X = ( X(t), a<t<b I has mean 0. continuous covariance function R(s,t) =

E[X(s)X(t)], and exactly K quadratic mean (q.m.) derivatives (K=O,1,2.. .).

The weight * is a known (nonrandom) continuous function. The performance of an

estimator is measured through the mean square error.

In BC (1989), we concentrated on linear estimators of the form

I= 2=nc X(t ) that are based only on the observations of the process X
n =i=O i,n i,n

at (n+l) sample points of a regular sequence of sampling designs

(Tn(h) = ft nai,ni t t ao,n ttn 'n,n n generated by a positive

continuous denFlty h via

ti n
f h(t)dt = i/n, i=O.....,n.

Here we consider linear estimators of I based on observations of the process

together with its existing q.m. derivatives X(1 )(t) .... X(K)(t) at (n+l)

sampling points T =(tI n over the finite interval [a,b], and using
11 in i_

coefficients C = (c K They are of the form
n ij.n i__O. .n

n K

d n = I I c i(jn i.ni--O J=Oini "

We want to determine the asymptotic performance of these types of estimators
based on regular sampling dc Igns T n(h)} u±nd apprcpriatc coeffici-rtc (Cn.

We are also interested in finding asymptotically optimal designs {Tn}n and
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estimator-coefficients ( in the sense that
n n tesneta

E(I-dI)2 / inf E(I-dIn)2 --+ 1
d n T n'Cn dn nn

where the infinum is taken over all sampling designs T with (n+l) samplen

points and all choices of coefficients C . (Optimal designs for fixed samplen

size, when they exist, are in general hard to determine.)

When no q.m. derivatives are used, the optimal-coefficient estimators are

-' -1of the form I = '-
n f RT XT I where X+ = (X(to,n ).....X(tn~n)) .

n n n n

R, ,)R(t n, ) assumed nonsingular, iT  = (f(tOn). f(tnn)) and
n n

f(t) = b R(st)O(s)ds. In BC (1989) the asymptotic performance of these
a

optimal-coefficient estimators using regular sequences of sampling designs,

I n(h), is obtained for a general class of processes with exactly K q.m.

derivatives, K=0,,2.... namely

2K+2 2 IB2K+21 b aK(t)0 2(t)n--*I h) dt,
( n (2K+2)! fa h2K+2 t

th
where B is the m Bernoulli number. In particular when the sampling density

m

h is proportional to (aK0 2 )1/( 2 K+3 ), then the asymptotic performance becomes

2K+2 (e)]2 IB 2K+2
1  b2 1/(2K+3 )t2K+3 A C*(1.2) n E[I-In(h )] 2K+2 { [aK(t)o (t)]dt} -

with minimal value C of the asymptotic constant. This result, together with

the asymptotic optimality of I n(h*) was shown for K = 0 and 1 by Sacks and

Ylvisaker (1966,1968,1970) and for general K by Eubank, Smith and Smith (1982)

but for a more restrictive class of covariances.

Optimal-coefficient estimators which use the values of the process and of

its existing q.in. derivatives at the sampling points, were considered by Sacks

and Ylvisaker (1970). Their mean square errors have the same rate of

convergence to zero, n , as in (1.1) and (1.2) for the
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optimal-coefficient estimators which do not use the existing q.m. derivatives,

but they have smaller asymptotic constant. In Section 3 we give a simple proof

of this result under slightly different assumptions than those considered by

Sacks and Ylvisaker (1970a) where the jump function aK(. ) was assumed to be

constant, and under additional assumptions on the weight function *. The proof

given here involves only a simple numerical approximation of integrals of

deterministic functions using derivatives (Proposition 1).

These optimal-coefficient estimators require the inversion of a

(K+l)(n+l)x(K+l)(n+l) covariance matrix, and hence they are liable to

numerically instabilities for large sample size. More significantly, they

require knowledge of the covariance matrix (and its partial derivatives) and

thus they are not generally robust. Stein (1988) showed that if an incorrect

covariance is used which is compatible (in an appropriate but restrictive

sense) with the true covariance, then the asymptotic performance of the

optimal-coefficient estimators under these two covariances is identical.

However this condition fails to be satisfied when for instance asymptotically

consistent estimators of the unknown covariance function are used. For

example, the covariance function R(t) = e-0 ti of a zero mean Gaussian process

and the covariance function R(t) = e , where 0 is an asymptotically

consistent estimator of 0, are not compatible.

In order to address the issues of robustness and of knowledge of the

covariance function, a sequence of estimators was introduced in BC (1989) which

uses regular sampling designs T n(h) and simple coefficients (not depending on

the covariance), and is based on the weighted Gregory formula. These

estimators use only observations of the process (but not its existing

derivatives) at the sample points. Their asymptotic performance was shown to

be identical to that in (1.1) and (1.2) for the optimal-coefficient estimators

for general processes with exactly K q.m. derivatives, K--O,1,2,..... These
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highly nonparamet'ic estimators are given by

n-i I(ti n) __1 __ X_ )
(h) 1 X(a) + I X(t +1 O(b)

n n 2 h(a) i=l h(t ') i.n 2h(b)

(1.3) 1 K i O tn j n(1.3) 1 K AI~ + (-1) "A [ O(a) X(a)]

n j h(tn-j,n} n-j'n h(a)

where Ai denotes j th order difference, Ahg(tn = 0r=(-1)  r +r, ,

O(i+jn. and

w j = [U-1) /(J+l)!] flt(t-1) ... (t-J)dt

for J.1, and can be written in the form

n

(1.4') In(h) = I I al ( X (t
n n i=O )(i)

where the coefficients ai i--O....n. are given by

- w for i = O,n,

1 +( 1+I1 ( )w for 1 I K,
(1.4") a1i  11 for K+1 < i < n-K-1,

n-i for n-K i n-1.

For example, the values of a,, i=,O....n. for K=0,I,2.3,4, (and appropriately

large n) are as follows:

1 1K=0O: 2 1, 1, 1, 1,...I , 1, 1, 1,

5 13 13 5
1 2: 2 ' 1 I, 1 . 1, 1, 1. 1. T2' T2

327 23 23 7 3K = 2: 8' 6"' T-4" , I .... , .I 1 . 2-4' 6"' 8

251 299 211 739 739 211 299 251
K 3: 720' 240 20' 720' T 720 240' 240' 720

95 317 23 793 157 157 793 23 317 95
K=4: 288' 240' 30' 720' 160' 1, 160' 720' 30' 240' 288
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In Section 4, we introduce simple-coefficient estimators which use the

values of the process X and of its existing q.m. derivatives at all sampling

points of a regular sampling design Tn(h). They are based on the trapezoidal

rule for integral approximation with a correction term that depends on the

values of the K q.m. derivatives at all sample points, namely on the weighted

Rodriguez formula (Section 2). Their asymptotic performance is shown in

Theorem 2 to be identical with that of the optimal-coefficient estimators which

use the values of the q.m. derivatives of X. The simple-coefficient estimators

do not require precise knowledge of the covariance function R (or of its

derivatives), and thus they are fairly robust. They are also numerically

stable in view of their simple form. However, they are impractical for

applications where q.m. derivatives of X at the sample points cannot be

observed. In such cazes the q.m. derivatives can be approximated by finite

differences. The resulting estimators (4.2) use only the values of the process

at the sampling points, and therefore cannot have better asymptotic performance

than that in (1.1) and (1.2) for the simple-coefficient estimators considered

in BC (1989). However, they may have comparable performance for small or

moderate sample size, as the example in Section 5 illustrates.

In Section 5, we compare the finite sample size performance of the two

types of simple-coefficient estimators based only on the values of a stationary

process with K=2 q.m. derivatives under both asymptotically optimal sampling

designs (Tn(h*)} n and uniform sampling. We find that in this example the two

estimators have the same asymptotic performance. We also find that the

estimators (optimal and simple-coefficient) that use the existing q.m.

derivatives clearly perform better than the estimators that do not for moderate

and large samples.

In Section 2 we develop a quadrature formula for integral approximation of

deterministic functions based on the derivatives of the integrand under regular
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sampling designs. These results are used in Sections 3 and 4.

2. APPROXIMATION OF INTEGRALS OF NONRANDOM FUNCTIONS USING DERIVATIVES AND

REGULAR SAMPLES.

The classical rules for approximating integrals of deterministic functions

use periodic sampling designs, and some of these have been extended to regular

sampling designs in BC (1989). Here we consider the trapezoidal rule with a

correction term that depends on weighted derivatives of the integrand at all

sampling points of the regular design. These rules are derived from the

standard Rodriguez formula for periodic sampling in Shoenberg (1969), and are

generalized to regular sampling in Proposition 1. Their asymptotic properties

are given in Proposition 2.

We will use the "h-weighted" derivatives of a function f defined by

f = f/h. f = f(l) /h for jl

provided f and h have the required derivatives, and the h-weighted differential

operator d :

d f = f 0) for J O.

so that di f = f(i+J)" Also the probability function H(xy) is defined by

x y h(t)dt for a~x~y~b,
H(x,y) - x

-H(y.x) for a~ygxgb.

and satisfies for all x A y and j > 0,

0 yHJ (1yhtd HJ+Ixy)
SH(x.y) = -h(x), fy j(t,y)h(t)dt = +(xy).

-1

In the particular case where h is the uniform density on [a.b]: h(t) = (b-a)

then f 0) = (b-a)J+lf(J ) j 0. and H(x.y) = (y-x)/(b-a).

Proposition 1. (Weighted Rodriguez formula for regular samplin&). If f and h
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have m( i) continuous derivatives on [a,b]. and if (T (h)} ' is a regular

sequence of sampling designs, then we have

fb f~~t=m M. 1 (2m-j-ln) 1 1 [f (t )+(-i) Jf (t
a (2) 0n~ mJ'!i'!i= )in(j) i+l,n

I n-i t i
+(2m)! I t dm [ i,n' t)Htti+i.n) f(m th )d.

1=-0 i~n

Furthermore, if f and h have 2m continuous derivatives on [a,b], then the

remainder integral term can be written as

m n-i
(-I) I~ f iln -Ht tHtt )M (th ) dt.
(2m)! 1=0 1 [ tin'tH ~i+n) f(2m)(tht

Proof. Fix [x,y] C [a,b], and define the weighted Legendre polynomial

P (t) =- d[~~)Hty
(0) M! dM~xt

It can also be expressed as foilows

P (t) d [H(x~t)(H(x,y) - H(x.t))]m

M I ni M+i
I (m)(- ) H(x.y)m d [H(x.t)]

m (rn+i)! rn-i

1= (ni!12 (-1)' H(x~y)m H(x,t)

from which we obtain for 0 j i m.

P 0) (t) = I (M-i! -)! H(x~y)m- iiIx,t,,

and in particular

Pj(x W (M+J)! (-l)iJ H(xy)m-i.

Likewise, we obtain



P 1 (Y) = (-I), (mj)! H(x,y)m-i = (1I)rni P N(x.

Now consider the remainder

P y d [H(x,t)H(t,y)]m f (th'') (2) =x f (t)f (t)h(t) dt.

For m 1. repeated integration by parts yields

from which we obt-tin

yy f(t)dt -m! m.l ~~y + (2m-j-l)' i-~f () +X 2) -O(j+l)!(m-j--l)! [0 1 ) 0) M')y

The result follows by first splitting the integral as follows, b f(t) dt
a

n-1 t
- f * f(t) dt, and then applying the above formula in each subinterval
1i-O i~n

[ti~n' ti+i,n ] and using H(t 1 ,n t~4  ) =~ 1/n . The second expression is

obtained by r-times repeated integration by parts of the remainder p M'

Based on Proposition 1 we introduce the following rule of degree m using

derivatives of f based on regular sampling T n(h),

I (f;h) = m! -1 [f (2-j1! + (-l) if (t
m n (2m)rn 0nl(--') i') _ =0 ) (J) i+l,n

as an approximation to the integral I(f) = fb ftd.For m=l and m=2, these
£aftd

rules a-e identical to the rules used in BC (1989). Also for i: odd the i sum

telescopes and reduces to f (a)-f f (b) hi smttc efrac sa

follows.

Prop~osition 2. If f and h have p~m continuous derivates on [a,b], then

np[I(f)- mI n(f;h)] - 0 for m < p < 2m,
mnn



9

(1 [f m 2  f (b )-f (a)] for p 2m.
n (2m)! (2m+l)! f(2m-1)(b-(2m-1)( ) fop 2.

Proof. For simplicity of notation we write ti for ti n and In for mI n(f;h).

If f and h have (m+j), 0 J m. continuous derivatives, then j-times repeated

integration by parts of the remainder pm in Proposition 1 gives

_1)in-1 t
Pm= 2m)!i=20 ftI d m-j [H(t i't) H(t~ti+l)]

m f (m+j) (t)h(t) dt.

The function d m[H(ti.t) H(t.ti+l)]m has q j distinct roots in [ti. ti+1].

say c1  ( <... < C so that putting c1 ,0 = ti. Ct,q+1 = ti+ 1. we have

-I)J n-1 q c i.+1Pm = (2m)! 2 0 R 2 c1 d,- Htit)H(t,t+]f m)(th)d.

i=O---0 ie m-jHt ti)] f(m+j)

Since dm-i [H(ti t)H(t ti+l)]m has constant sign in each subinterval

(ci.j , ci,+l), the Mean Value Theorem can be applied to obtain

n-1 q ci.E+l
m = 1  . f () fc [H(t i t)H(t(2)! )]

m h(t) dt
•i- e-Ot= i.R

where cie ( < ci~ 1  . If we write f i. h(t) dt = ae/n, it follows that

0 = a0 ( a I ( ... < aq ( aq+l and putting u = nH(ti.t), we obtain

n-l q 1 du.

Pm = (2m) I-O IOf (m+j)i'e) nm + JP du

ih O )(o nt)l fa',

From the Mean Value Theorem, we have - h( )(t < C so

that by Riemann integrability. we have

nmJI-In~n (2m)! I fa d [u(l-u)]mdu f (m+j ) ( t ) h ( t ) d t

S(2m) 0 m - j [u(l-u)]m du [f _(b) - f (a)]
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(2= Bm) f(2m-1)(b -( 2m-1l)(a)] if j=m

=0 if 0 j < m.

Using B(m~m) = (m+l) F(M+1) mn!
F(2xn+2) - (2m +1)!- . we obtain the final result.

Now assume j > m. Then rn-times repeated integration by parts of the

remainder p Min Proposition 1 yields

=(;) m n-1 1 ~

Using the explicit expression of P (0 ) (t) in the procf' of Proposition 1, we have

Mm n-l t 1

Again, repeated integration by parts gives

t i+l H t M+e f ( ~ ~ ) d
t ) (2m) ht)d

- -nI (MRI melp f 2 m+p(t)jit

(m+l). tht . rdtlp

+~ ~ (1 )m (e)) Htt f(J+r)(t )d

-m (r+e)! 1

P-0 (m~+I+F!n '~el~ (2m+p) i+i

+ (-I (rn +0! ft 1 lH + (t1.t)f(J(t)h(t) d

and using the Mean Value Theorem. we have, with t~ ( <t

I J-rn-I MP)
(r+ +L I f (2mn) (t 1+1 ) +~ (r2~ ~ ) fm+Pmipp (t i+1)( m+P+~ n p 1 ( M e+'+P !(2me+p)



+ (~)im(m+e)! (J+E+l)ni+R+1 (m+j)~i

(m+e+l)nm~l(m +

Therefore we obtain

Pm m(-1___m1 n-i f (+ n-2m

-(2m)! I(SH(1) I~~ 2~ (2m)t i4-~+, on

rpIm 1  1 n-i-2
(2m [u( 1-u)] du 2- 2f2m-t,, + o(n )

Using -1=h(. (t .. ,-t , . we obtain

n 2m'n] n (2Im Bm,m) a b 2m (t)h(t) dt

n (2m)!(2+) f 2 .l() (m1

3.~~ OPIA-aFIIN (2m)A0R

Th otma-oefiintetiaor Imniie h mansuaeero

dh nptamgallcoeficnea estimators tha us thinmie thm.eivsatie eofrh

process X at the sampling points. They are of the form

(3.1) dIn = . K,T ~T T

where

Yj.n = (X(j)(tOn) .X(i)(t n n)j O...K: 1 x (K+1)(n+l) vector,

=(R(e .m) (t t)}l:jO.. : (K+l)(n+1) x (K+1)(n+1)

covariance matrix assumed nonsingular,

fl. - (f~j)(t ) . . .fo)(t )) K: I x (K+I)(n+I) vector.
KTnO,n n~n Jo

f 1a R(s.t) *(s)ds.
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The asymptotic performance of these optimal-coefficient estimators using

regular sequences of sampling designs, dIn(h), is given by Theorem 1 under

slightly different assumptions than those considered by Sacks and Ylvisaker.

where also the jump function aK(O) was assumed to be constant.

Theorem 1. Under Assumption A K we have

2K+2 2 (K+I)!2 _ b a ( t)
n E[I-dI (h)] -~fdt

S-n h  
(2K+2)!(2K+3)! h 2K+2(t)

If h is proportional to (aK02)1IC2K+3)' then the asymptotic performance

becomes

2K+2 n_ I__h)]2 -- _ (r ( [0 1/(2K+3 12K+3
E[I-d n (2K+2)! (2K+3)! K( t ) 2

with minimal value of the asymptotic constant. The asymptotic optimality of

the designs (Tn(h ))n is shown in Sacks and Ylvisaker (1970), where the jump

function aK was assumed constant, and under a Lipschitz type assumption near

the zeroes of weight function * (cf. (3.15) in SY (1970b)).

The condition AK and function aiK used in Theorem I are defined as follows.

where the following notations are used: R(' q)(s't) =aP+qR(s.t)/OsPatq .

R(P'q)(t~t- ) = limst R(P'q)(t,s) and R(P'q)(tt+) = imstR(P'q)(t.s).

Assumption AK (K=O,I.2.... ).(i) R(K 'K ) exist and are continuous on the square

[a.b] x [a.b].

(ii) Each R(P q)(ts) with p+q=2K exists on the square [a,b]x[ab]; has

continuous mixed partial derivatives up to order 2 off the diagonal (t~s); and

at the diagonal (t=s) it has left and right derivatives which are continuous

functions of t, i.e. R ' q)(t+.t). R(P'q)(t-,t) exist and are finite for all

p+q = 2K+1 and are continuous functions of t, and sst IR(o'2K+l)(s.t)l < m.

For each t E [a,b]. R(O'2K+2)(-.t+) E H(R), the reproducing kernel Hilbert
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space of the covariance R with norm 1I,11R ' and suptIR(O' -X+
2 )(.,t+)IlR ( . Also

each R(j.2K+2 )(t,s), j=l ....K, exist and are continuous on [a,b]x[a,b] for

t 4 S.

(iii) aK(t) = R(K.K+I)(t.t -) - R(KK+l)(t.t+) is positive and continuous

on [ab].

(iv) 0 and h have K+2 continuous derivatives on [ab].

Part (i) of Assumption A K is the necessary and sufficient condition for

the process X to have K mean-square continuous q.m. derivatives. Part (ii)

requires smoothness properties off the diagonal and thus it is weak. Part

(iii) guarantees the process X has no more than K q.m. derivatives.

Assumptions (i)-(iii) are satisfied by a large class of processes including Kth

order iterated integrals of Wiener process, and stationary processes with

rational spectral densities. When X is stationary, R(t,s) = R(t-s), then

conditions (i)-(iii) are satisfied iff R(2K+2)(t) exists and is continuous for

t;4 and R(2K+I)(o+), R(2K+I)(o-) exist, are finite and the jump

aK(t) = R( 2 K+I)(O-) - R( 2 K+I)(O+) = aK is positive.

In the proof of Theorem 1, we will use the following "h-weighted"

derivatives of the covariance R,

R (p.q)(ts) = E{Y (p)(t)Y (q(S)} for 0 p.q K. and t.s E [a.b].

Furthermore, we define recursively R(p.q)(ts) for {K < p or K < q and

0 p+q 2K, t.s C [a.b]} and for {2K+1 p+q 2K+2. t s s in [a.b]) as

follows:

R(pq)(t.s) = 1 (q1l) (tsI for K < q.

R(p q)(t.s) = 1h(t) )(t.s) for K < p.
r h(t) (p-l.q onro t

Proof of Theorem 1. Let P Kn be the projection from the Hilbert space H(R (0))
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onto sp{R(0 -J)(.,t). t E Tn, j = 0.....K). In view of the isomorphism between

H(R(0)) and H(Y(0)). as in the proof of Theorem 1 in BC (1989), the mean square

error of the estimation of I by dIn(h) can be written as follows:

2 =2b
E[IdIn(h)] = f-P fl (<f-P K.nf  f> R()= a (f-PK f)(s) h(s) ds

Eidnh ]  f-K.nfl o ,n~R a~h~)d

where f(t) f b R((t s) h(s) ds. Let g = f - P f. Then g is orthogonal towhr ~t a  (0)t ' - K~n"

sp{R(0Qj)(-,t). t E Tn. j = 0.....K) and in particular g(j)(ti) =

< g. R(0 -J)(.,ti) >R(0) = 0 for j = 0.....K. Applying Proposition 1 with

m = K+l to the function g, we obtain

E[I-d n(h)] = S g(s) h(s) ds
d n a

(K+l)! n-i K 1 (2K+l-J)! [l)Jg((2(+ I I n+-- (K(t " [( ++()]
(2K+2)! i= J-O n. (K-i)! (J+l)! j)(ti j)t

H)K+l n-i t i+l n K+l+ (2K+2)! -7 fti [H(t i~nX)H(xt i+l~n)] 92+2+ I h~)d

i-O i.n

K+l n-i t ~

H) -- , in g(2 xHK+2}~l(x)h(x) dx.

t ~ ~ '  LHinXHx i ln] + g(2K+ 2)(x)h(x) dix.
(2K+2)! i0 i.n i+l.n

From Assumption A K , we have

~b

f( (t) = fa R(o+l) (s,t+)h(s)ds + f t R(o )(s.t-)h(s)ds

and taking the h-weighted derivative.

f (t) = -P3t + 5b R (s.t+)h(s)ds(2K+2) K(t) + a (o.2K+2)

where P K(t) = R(.2K+l) (tt-) - R(o.2K+l)(tt+). From Assumption A K '

Ro (..s) C H(R(o)) for J--O.....,K and R(O K+2)(.,t+) C H(R(o)), and thus
(0-J) 1 ( ) . (0.o.2)2)(.

.s). R( +2 )(.t+ R() = R(J.2+2)(st+)

and since PK.n f E sp(R (0J)(..t).t C T n . .K). we have for t t Tn '
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<PKn f . R(0 +2) (.t+)>R = (PK.nf)(2K 2 )(t+) = (PK.nf)(2K+2)(t).
(0)

Writing R(o.2K+2) (o.t+) = EY(0)Et . ft E H(R(0) it follows from the

isomorphism between H(R(0)) and H(Y(0 )) that

<f,Ro )(,t+)> = E[ b Y(o)(s)h(s)ds°f](0)

b bE[Y ()E ]h(s)ds = f R (s.t+)h(s).
a (0) t a (O,2K+2)

It then follows that for t f T
n

g(2K+2)(t) = -PK(t) + < f - PK,n f. R(0,2K+2) (,t+) >R( )

Then, it follows that

'2IK n 1tt+l n PK(t)[H(t t)H(t +  h(t) dt
(2K+2)! 1--0 t1n in' ,nti+l.

_1)K+l n-1 fti+l.R

+ (2K+2)! I ft < f-PKn f . R(02K+2)(-,t+) >R

x [H(ttin' t)H(t.t i+l~n)] K+lh(t) dt.

The second term is bounded in absolute value by:

n-i t i+K+
1 hf-P fit M I £ i [l~n )]Ht h(t)dt.

(2K+2)! K.n R(o 0 .2K+2 iO t i  [H(ti.t)H(t + 1 .n

where MO,2K+2 = suPtllR (0.2K+2)(.,t+)llR ( w* As in the proof of Proposition

2. we have

n-l tl K+ K+I!2
St.n [H(ti, t)H(t ,n)] h(t) dt = 2K+2

t-t inn tt 1l n (2K+3)!

The upper bound then becomes (for some constant cO),
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c 0 IIf-PKf1 n- (2K+2)

Since 11K(t) c1 by the continuity of K(t) on [ab]. and hf-PK,nflR ()

llfil ,we have for t f T

lg(2K+2)(t)I c I + 11"'R (0)MO,2K+2,

so that for some constant c2 ,

2  -1 K+l n-l t ti+l,n K+1
K~n fRc- (2K2)! 10t [H(t in X)H(X~t i+gn)] (2K+2 ) (x)h(x) dx

c2n- 2K+2)

It follows that for some constant c3 the second term is upper bounded by

c 3n-(3K+3). Therefore the second term is o(n-(3K+2)).

For the first term, since each H(ti n .t)H(t,t i+ l n ) has positive sign on

(t i n  t i+,n). the Mean Value Theorem can be applied to write it in the form

H)K 2 n-1
(2K+2) !n2 K+ 2 (2K+3)! i1O

1 '~)t~~t~) t~ < Cmi.
where ti.n < < ti+l.n Using I = h(Ci)(ti -t ti<n Cn

ti+l,n' and the above result for the first term, we obtain by Riemann

integrabi Ii ty,

2K+2 ]2 ( 1)K(K+I)!2 b
(2K+2)!(2K+3)! a PK(t)h(t ) dr.

The final expression of the asymptotic constant follows from Lemma 3 in

BC (1989). 0

4. SIMPLE-COEFFICIENT ESTIMATORS

Simple-coefficient estimators using the existing K q.m. derivatives of X

at the sampling points give better approximation of the integral I than the
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simple-coefficient estimators (1.3) which do not use these q.m. derivatives.

These estimators are based on the trapezoidal rule, with a correction term that

depends on the values of the q.m. derivatives of X at all sampling points of a

regular sequence of sampling designs, i.e. on the weighted Rodriguez formula.

They are of the form:

(4.1) din(h) = (K+1)! 1 ___ nnl (l) _ M,(

n 2+2)! ' -lj) ni j'J( +-+,J--O ni+l (J+l)!(K-J)! _ ti, 0) Y (ti

where the h-weighted q.m. derivatives Y 0) of Y are defined as in Section 2:

YO: Y/h. Y (j)
Y = Y/h. Y =(l)/h. j 1.

and superscript denotes q.m. derivative. Note that for odd j the i-sum

telescopes to Y(0) (a)-Y 0)(b). Their asymptotic performance is given by

Theorem 2 under a weaker assumption than in Theorem 1.

Theorem 2. Under Assumption A , we have

n2K+2 EII(h] 2 _*_(K+I)' 2  b 0 2(t)a K ( t )  t
d n n (2K+2)!(2K+3)! fa hd2K+2(t

2 1/(2K+3)
If h is proportional to (aK#2)I , then the remarks on the

asymptotic performance and optimality following Theorem I are also applicable

here. Assumption A is defined as follows, and the comments made on Assumption

AK in Section 3 are applicable.

Assumption Ak (K=0.l.2.... ). Assume (i), (iii). (iv) of AK and instead of (ii)

the following.

(ii)' If pq are nonnegative integers with p+q 2, then R(K+P'K+q)(st)

exists and is continuous off the diagonal of the square la.b]x[a.b] (i.e. for

sst); at the diagonal s=t, R(K.K+I)(t.t+), R(K.K+I)(t.t- ) exist, are finite and

are continuous functions of t; and for pq l. Ss it IR(K+p.K+q)(s. t)I <f
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For K--O, the simple-coefficient estimators have only a "trapezoidal"

component (without correction term). For K=I, they have a correction term that

depends only on the q.m. derivatives of X at the endpoints of the interval

[a,b], and after approximating these q.m. derivatives by finite differences.

the resulting estimators are identical to those given in (1.3).

The weighted q.m. derivatives in (4.1) can be approximated by the

generalized version of Newton's backward and forward finite difference formulas

for regular sampling as follows (cf. BC (1989). Krylov (1962))

-.)(t nJL Wn I(O)AY(t) for i=0,1 .... n-K,
Se=J(0 n

SK (1 )8+ e~~
Zn 2 8!e (O)AY ( t i- ,n  for i=n-K+l,...,n,

where W8 (u)=u(u-l).. .(u-e+l). el (W0 (u)=l). In order for the procedure to be

"symmetric", we also use in (4.1),

)(tl n I  oAYot for i-O,...,K-2,

(0) i+l~n 8! e '()i+l~n'

S.W (O)AY (ti+ln) for i=K-l....n-l.

e=jV e(0 len

The estimators derived from these approximations and (4.1) are of the form

I 1 n O_
(4.2) d1(h) - I b )(td n -n i_ bi K( )(in )

where the expressions of the coefficients b are too complicated to write for

general K (much more so than in (1.4")). Their values for K--0,1,2,3 (and

appropriately large n) are:



19

K=: 1 1
K, 1, 1, 1, 1. 11.....1, 1 1. 1. 1. 1.

K51: 5 13 13 5

K =2: 143 14 121 1 11 1 1 1 121 14 143 11
T30' 120 T-' 120' T2...12' 15' T20 3

529 2263 1327 1721 87 83 83 87 1721 1327 2263 529
1680, 1680' 1680' 1680' 84' 84' 1 .........84' 1680' 1680' 1680' 1680

We conjecture that the simple-coefficient estimators (4.2) have the same

asymptotic performance (1.1) as the simple-coefficient estimators (1.3). The

example in Section 5 of a stationary process with two q.m. derivatives seems to

support this claim.

The asymptotic constant corresponding to the optimal-coefficient

estimators or the simple-coefficient estimators (1.3) that do not use the

existing K q.m. derivatives is

B2K+21 b aK(t) 2 (t)~'a h~~2 dt.
CK- (2K+2)! 'a h2K+2(t)

The asymptotic constant corresponding to the optimal-coefficient estimators or

the simple-coefficient estimators (4.1) that use the existing K q.m.

derivatives is:

(K I)! 2 ba,(t) 2(tM

dC = (2K+2)!(2K3)! ah2K+2(t)

Their ratio depends only on the degree of smoothness K:

dCK (K+I)! 2

CK IB 2K+2 1(2K+3)!

For large sample sizes, the number of samples required for a iven mean sqluare

error when using estimators with and without q.m. derivatives are related 1Y:
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1/2K2 for K =0,1,

dnK CK .82 for K =2.

N C .60 for K = 3.

.41 for K = 4.

Thus, the performance improvement of the estimators that use q.m. derivatives

over those that do not increases as the number of q.m. derivatives K increases.

Proof of Theorem 2. For simplicity we write In for dIn(h). In view of the

isomorphism between H(R(0)) and H(Y(0 )), the mean square error is written as

follows

E(I - In)2 = 1lfn1l2
n n R(0

where

fn(t) = E[Y(0 )(t)(I-I)]

n-I K
R (t s)h(s)ds - I I.- F [)]R( .
(0) I--0 J--O nJ+ l  .K[R(o.J) I (0J)(

and

F - (K+I)!_ (2K-J+I)!F , -= (2K+2)! (K-J)!(J+I)!

Thus, for K 0.-

E(I-I n)2 (f n'f )= fn>R(o)

b n-i K 4 ~
fn(t)h(tdt - I I J+ [( (t) +1 FnK ) (t

t---0 J--O nJ~ K f)J J +)

1 n-i ti1  K+12K--1 O 1 0 t' d K+ 1 (~ ) ( - i1 1 (f n)(K+ ) ( t )h ( t )d t

by Proposition 1 with m = K+1. IntegratinK by ports we obtain

n-1

( )2 1 n-1 1( t 1-(2K+2)' i-- ' ' | If ) K ( )
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- ti [H+ 1 dt)H(tt f)])K+1 ( K (t)h(t)dt }ti  dK+2[H(ti ' n+ fn(K)

Applying Proposition 1 to the integral of R(0 )(t.-) in the expression of

f . we obtain
n

1 n-1 t i+1 sK+h df n ( t ) = (2K+2)!. i--0 ft i d K+l [H(t i .s ' it+l) R (O,K+I) ' '~~sds

and taking the Kth weighted derivative, we have

n-I t+ I -I

(f )K(t) - I I2f t J+l d K+[H( )H( j+)]K+l R (t's)h(s)ds.n (K) (2K+42)! i =0tiJ (K,K+1)

Now we show that (fn)(K)(t) = (fn) (K) (t+l) = 0. Indeed, using the following

function which was introduced in the proof of Proposition 1,

1 K+1
e(0) (t;tttt+ ) = (K+I)! dK+l[H(ti't)H(t'ti+l)]

and its explicit expression there, we have

(K+I)! n-I tJ+ I

(f n)(K)(ti) = (2K+2)! . t7 P(0 )(S;tjtj+l)R(K,K+l)(ti s)h(s) ds
J--0 j

K+I e n-i t
(-K+0) I (K++)!(-) 2 J (tj.s)R(KK+l)(ti.s)h(s) ds.
(2K+2)! (K+-P)! R! n J J

Applying the Mean Value Theorem. we have

(K+I)! I K+I (K+I+P)!(_1)e n-1

(fn)(K) (ti) = (2K+2)! K-22  2 (ti b)n P--0 (K+I-P)! t! (P+I) J--O

where t <b (tj+ 1 . By taking h to be the uniform density, the h-'etghted

polynomial P(0 )(t;ti.t 1 +1 ) becomes the classical Legendre polynomial

I f)+1 )K+1
(K+I) [(-I-u) over the interval [0.1] and therefore

, +]KI K KVI (l lu
fK I["(-") du = 1 du = K (K+I+P)! (-1)

P0 (K+I-P)' P!2  0 P=() (K+1-P)! P1 (P4-)

and %ince
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1D K+I[u(l-u)]K+I du = {D K[u(l-u)] K+ = 0,f00

it follows that (f n)(K) (ti) = 0, and likewise (fn)(K) (ti+,) = 0. Thus the

first term in the expression of the m.s.e. E(I-I n)2 vanishes and we can write

2 (K+I)! n-1 ti+ 1

E(I-I n) (2K+2)! Ift P(1) (t;titi+l)(fn)(K) ( t )h ( t )d t

" i--O i

Replacing (fn)(K)(t) by its expression, the m.s.e. is decomposed into two

terms: the diagonal terms Ii Mi i and the off-diagonal terms 7iej Mi'j

Diagonal terms M i"

M - (K+1) 2  ti (s;t.t [ f ] P()t;t t )
ii (2K+2)!2  ti P(0)Si +l t i +  1 () ,ti+ I

x R (K,K+)(ts)h(t)h(s) dtds.

Using the expression of P(1)(t;t iti+1) in the proof of Proposition 1, and

integrating, we obtain from the Mean Value Theorem

(K+I)! K+l (K+l+e)!(-l)e I

M1,1 2 2KI,
(2K+2)! e=1 (K+l-e)! e!(e-l)! n

+ f i+l I S tL He(t s) R (n s)h(s) ds
Sti ()(S'ti+l)  Ine I' (K.K+I) s

where ti < rs 
< s < TI' < ti+1. From the expression of P (so t )(S t+l) and the

Sss (0) 11

Mean Value Theorem. we have

(K+l)!2 K+l (K+l+e)! e I K+l (K+l+p)!(_l)p I
=- 2 2 (-1) K+l-£ 2 K+l-p

(2K+2)! e=l (K+l-e)! e2 n p-O (K+l-p)!p! n

x R(K)+t( HI alP+e (tlS)h(s) ds
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+ RK)(la) f il [ -O(t S)Jlip( tj.s)h(s) ds}

where t~ < rl ( a~ ( t i 1 . t1 ( a' ( ii

__(K+1)! 2 1

(K2!2 n2K+3

(2K+R)' n

x R RKl(lIi.a) (K+l+t)! (-1) (K+1+p)! (...l)P

R =1 (K+l-e). S! p-O(+-) p!2  p+e+l

Ks-e K+1
(T'a' 1(K-s-1+)! (-1)~ 2 (K+l+p)! (-i)1 r i _

(KrKI,.a i J}.K+-~le
(K.K+) ii ~i (+1-e) e!2  p=O (K+l-p)! p! P 1  p-+

We now concentrate on the coefficients of R( (77a,) and R(ra.
(K,K+) ii (K.K+1)

We have

1KlK+1 + K+1-
f6D [u(1-u)J du f DK+[v(l-v)J dv

K+1 1 -
=(K+1)1 2 (Ks-lse)! (l)8 ;1 DK+1 K+1 ___

-i (K+l-e)l f! [U(1-U)] du fu ve1) dv

2K+1 (-1 K+1
=(K-si)! 2 (K+I+e)! (-) 2 (K+l-P 1 p)!d

t=i (K+1-e)! V2p=-O (K+1-p)! p! 2f

- (- K+)! 1 (K+1-s-)! (-1) 1 (K+l+p)! (....)P 1

t=1 (K+i-eO)! el 2 - (K+1-.p) ! 2  p+e+1

and also by repeated integration by parts we have

IK+i K+1 u K+2 K+1
f8D[u(l-u)] du f D [v(l-v)] dv

-(-1) f0l [I(1-u D [K2 u(i-u)] + du

= )K1 -s- K+1 (2+) (+.~ )=(2K+2)! (K+1)! 2

- (-) (-) (2-s-2! B(+1.K1) = (2K+s3)!

Equating the two right hand sides, we find that the coefficient of

R(K.K+1)(Ii 1 a 1 ) is
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- (K+1)! 2 __1

(2K+2)!(2K+3)! 2K+3

Also,

I '+1 K+l 1 K+2 K+1
0 D~ [u(l-u)] du f D rv(l-v)] dv

K+1+1! (K+l+e)! (-I) e1D~ K+l 1 vP1
(K1) (KI-) fl DK [u(l-u)] du f dv

e2K+1 Ie) e K u(Pl)

2 (K~)! (K+l+e)! (-I) e (K+1+p)! (.)p f' uple du
(K=1 1 (K12!~ 2 1 (.lp) ,2 J 0 ulud

2K~l (KK+1) V -O (+IPlP

2Kl) K+ (K+l+e)! (-1) (K+1+p)! (....)P I __

e=1 (K+1-e)! V 2 p-- (K+l-p)! P, pL ~T-p+e+l

and repeated integration by parts gives

fID K1[u(1-u)] + du f D K2Ev(l-v)] ~ dv -(2K+2)' (I(+1)!.
0 u (2K+3)!

Equating the two right hand sides, the coefficient of R (n'.a:) becomes
(K.K+l) V i

(K+1)! 1
(2K+2)!(2K+3)! n2K+7

Therefore

M = (K-N)! 2{1
i~i =(2K+2)! (2K+3). nK-+ (K+l.K)(ai i) -(K+l K)ai* .r.)}

Using - =h(C )(t -t) t( (t 41  we obtain by Riemann integrability.

n2K+'2 . -+ (K-N)' 2  f b[R(-tR tt)htd
i' n (2K+2)! (2K-3)! a R(K+l.K)(tt (K+lK)t )htd

= (K+l)! b dt
(2K+2)! (2K+3)! fa h 2K+2(tM

(by Lenmma 2 in BC (1989)).

Off-diaixonal terms M4 i~j. 

Integration by parts gives
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i+1 P (t~ (K.K)lR(t,s)h(t) dt

1+1 P1~~ (K,+) 1' (.K

f ftl P 0 (t~t1.t1 )RKl Kl(ts)h(t) dt.

so the off-diagonal term becomes

M. _ (Kj)!2 [P (t ;t t )R (t ,s)
i (2K+2)! 2L (0) i+lli'i+1 (K,K+l) 1+1'

t ,i t l'(0) ~lP) J ii+l (K+l.K l)

The first term has already been shown to be identically zero. Thus, we have

M f t:i f J+1 P (t; til t1+1 )P(Q) (s;tj tj+,

x R (1Kl (t s)h(t)h(s)dtds.

(KI!2K1(K+1 E)!(-l) R 1 K+ (K+l-sp)!(-l)p
2 (Kl)'£ 2 nK+l-e .2 (K1'p 2  nK+l-p

(2Ks-2)! t£=O KIe!P n p- Kl) ! n

xf' +15 ftJ+1 HP'

Applying the Mean Value Theorem, we obtain

(KI!2 1 K+1 (K+1+ )!(-l)e

M ' (K )! 2 n____________e ! !(e l)

K+1 (K+1+p)!(-1)p (

x KI1-p)! p!(p+l)! R(Ks-1,Ks-) (a irj b -P'

where t 1 a i( t i~l t <b ( t J~'It follows that
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2K+2 1 1 DK+l K d ) 2n 2£I i ,{2 0 D l[u(l-u)] du}
i oj j  n (2K+2)!2' 0

x f f R K+l,K+l (t.s)h(t)h(s) dtds 0.
t (Kls

The final result is obtained by combining the diagonal and the

off-diagonal terms. 0

5. EXAMPLE

We consider the approxintion of the integral

T f e tX(t)dt.

where the statiorry process X has covariance

s2 a 2 -alt-sI
R(t~s) = { ] + alt-sl + y-{t-s) e

with spectral density f(N) = (Sa/3w)(a 2 + X2) - . and thus exactly K=2

mean-square continuous q.m. derivatives. When 3 g 0. the density that

generates the asymptotically optimal design is

h (t) = (2/7)(e2" -) 1 e 2 t /l. Ot<l.

and the corresponding sampling points are

t.n = (7/2,B) Pn[l + (e -1)i/n], t-0..

The sample size of the design T is N=n+l. For simplicity of notation we willn

write ti for t.

The simple-coefficient estimators (1.4). with K=2. which do not use the

two existing q.m. derivatives, are denoted by I n The asymptotic ronstant it,n

n6 E(I-I n)2 ---* C2 has the following expression under the asvmptoticallv optPi

design
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B6 1 20t1/7 7 =Y7 a5/57
B6 - (f0 I/Tdt

C2 =- {f6! Oa 2 (t)e ] = 7a5/5670

a 2(t ) = 16a 5/3, B 6 1/42, - = (7/2-)(e20/7-1) ). and has the following

expression under the uniform design

B6

u B a6(1 20t 213c2 = 6! fo a2 ( t )e 2 dt = (e _1)/11340.

The optimal-coefficient estimators (3.1) which use the existing two q m.

Sn
derivatives at the sample points (t1 . are denoted by dn The

simple-coefficient estimators (4.1) which use the existing two q.m. derivatives

at the sample points (t }n  have the form:
.n n-0

l n-lIl
di ()+ Yo (tT + :F (1)) + (Y (0) )(1))dn = n 2(0) i=l (0 .n (0) 10n 2  (1) )-(1)

n-1
1 1 Y(2 )(0) + I Y (tn + i Y((1)

+ t i (2 (2) , .•n 2 Y(2)

where

Y(0) (t) = ie (53/7)t X(t).

Y( )(t) = '2e(30/7)t ( 5P X(t) + X'(t) )
(1) 49

Y(2)(t) = 3e(117) t ( 15e X(t) + 26a X'(t) + X"(t) )343 49

The asymptotic constant under the asymptotically optimal design in

6 -:2 din 6  *)2
n F(l-I) A. C n i E(- dIn ~d C2 is

I I 2t 1/7 7 75S
dC2  0000 {f [a2 (t)e ]I dt) = i a /18900.

The simple-coefficient estimators (4.2) with K=2. which use the

.* n
approximated existing two q m. derivatives at the sample points (ti n*i_ are

I n 1-

denoted by TO.
d n

When 0 is close to zci-o. the asymptotically optimal sampling design
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becomes close to periodic design. The improvement in performance of the

asymptotically optimal design over the uniform design, when either esLimators

I or I are used, increases with P. We select a moderate value of (3 = 3 to
n d n

differentiate between the two sampling designs.

For small values of a (highly correlated observations) the normalized mean

square errors are very small; for example when a = 5. a sampling design of size

3 gives a normalized m.s.e. of order 10-3 . For large values of a (weakly

correlated observations) the normalized m.s.e.'s are significantly higher: for

example when a = 20. a sampling design gives a normalized m.s.e. of order .3.

The normalized m.s.e.'s corresponding to the optimal-coefficient

estimators and simple-coefficient estimators that use the two existing q.m.

derivatives, n and E(I-d1)2 /EI2, along with the asymptotic
-6 n 2t

expression nd C 2/EI are plotted versus the sample size N=2....,20 in

Figure 1 for a = 15, (3 = 3. It is seen from Figure 1 that for small sample

sizes the optimal-coefficient estimators dI n outperform (as expected) the

simple-coefficient estimators dI n However, for moderate n their performance

is nearly identical and very close to their asymptotic performance.

The normolized m.s.e.'s corresponding to the two simple-coefficient

estimators. E(I-I ) 2/EI 2. E(I- T ) 2/EI 2 . along with the asymptotic expressionn d n

n-6C2/EI 2 . are plotted versus the sample size N=2.....20 in Figure 2 for

a = 15. ( = 3, under both the asymptotically optimal (*) and the uniform (u)

sampling designs. It is seen from Figure 2 that the asymptotically optimal

design provides better performance than the uniform design. It is also seen

that the m.s.e.'s of the two simple-coefficient estimators In and dIn are

almost identical for all computed sample sizes, thus suggesting that dIn has

the same asymptotic performance as In"

Comparing Figures I and 2. we see that the estimators that use the

existing q.m. derivatives have better performance than those that do not for

moderate and large sample sizes. Table 1 shows the number of samples N
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required to achieve a specified performance under different designs and

estimators.
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Normalized m.s.e.
Design Estimator i0-1 10- 2  10-3

Simple coefficients I 3 5 8
Asymptotically No derivatives n

Simple coefficients d I 3 5 8dn

optimal Approximated derivatives

From asymptotic expression (C) 4 5 8
-No derivatives 2

Simple coefficients Iu  4 7 11
No derivatives n

Uniform Simple coefficients d 4 7 II
Approximated derivatives dn

From asymptotic expression (Cu) 4 6 9
No derivatives 2

Optimal coefficients dI n 2 4 6

Asymptotically With derivatives

Simple coefficients I 3 4 6

optimal With derivatives 
dn

From asymptotic expression (dC) 3 4 6
With derivatives V2

Table 1. Number of samples N required to achieve a specified
performance under different designs and estimators for
a = 15. =3.
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